16.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为36π.
【考点】LG:球的体积和表面积;LR:球内接多面体.菁优网版权所有
【专题】11:计算题;35:转化思想;5F:空间位置关系与距离.
【分析】判断三棱锥的形状,利用几何体的体积,求解球的半径,然后求解球的表面积.
【解答】解:三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,
可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,
可得,解得r=3.
球O的表面积为:4πr2=36π.
故答案为:36π.
【点评】本题考查球的內接体,三棱锥的体积以及球的表面积的求法,考查空间想象能力以及计算能力.
三、解答题:共70分。解答应写出文字说明、证明过程或演算过程.第17~21题为必选题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
17.(12分)记Sn为等比数列{an}的前n项和.已知S2=2,S3=﹣6.
(1)求{an}的通项公式;
(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.
【考点】89:等比数列的前n项和;8E:数列的求和.菁优网版权所有
【专题】35:转化思想;4R:转化法;54:等差数列与等比数列.
【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{an}的通项公式;
(2)由(1)可知.利用等比数列前n项和公式,即可求得Sn,分别求得Sn+1,Sn+2,显然Sn+1+Sn+2=2Sn,则Sn+1,Sn,Sn+2成等差数列.
【解答】解:(1)设等比数列{an}首项为a1,公比为q,
则a3=S3﹣S2=﹣6﹣2=﹣8,则a1==,a2==,
由a1+a2=2,+=2,整理得:q2+4q+4=0,解得:q=﹣2,
则a1=﹣2,an=(﹣2)(﹣2)n﹣1=(﹣2)n,
∴{an}的通项公式an=(﹣2)n;
(2)由(1)可知:Sn===﹣[2+(﹣2)n+1],
则Sn+1=﹣[2+(﹣2)n+2],Sn+2=﹣[2+(﹣2)n+3],
由Sn+1+Sn+2=﹣[2+(﹣2)n+2]﹣[2+(﹣2)n+3],
=﹣[4+(﹣2)×(﹣2)n+1+(﹣2)2×(﹣2)n+1],
=﹣[4+2(﹣2)n+1]=2×[﹣(2+(﹣2)n+1)],
=2Sn,
即Sn+1+Sn+2=2Sn,
∴Sn+1,Sn,Sn+2成等差数列.
【点评】本题考查等比数列通项公式,等比数列前n项和,等差数列的性质,考查计算能力,属于中档题.
18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.
【考点】LE:棱柱、棱锥、棱台的侧面积和表面积;LY:平面与平面垂直.菁优网版权所有
【专题】14:证明题;31:数形结合;44:数形结合法;5F:空间位置关系与距离.
【分析】(1)推导出AB⊥PA,CD⊥PD,从而AB⊥PD,进而AB⊥平面PAD,由此能证明平面PAB⊥平面PAD.