订单查询
首页 其他文档
全国统一高考数学试卷(理科)
大小:0B 24页 发布时间: 2024-01-31 08:24:33 13.29k 12.03k

【点评】本题考查了空间位置关系、空间角、三棱锥的体积计算公式、向量夹角公式,考查了推理能力与计算能力,属于中档题.

20.(12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.

(1)证明:坐标原点O在圆M上;

(2)设圆M过点P(4,﹣2),求直线l与圆M的方程.

【考点】KN:直线与抛物线的综合.菁优网版权所有

【专题】35:转化思想;41:向量法;5D:圆锥曲线的定义、性质与方程.

【分析】(1)方法一:分类讨论,当直线斜率不存在时,求得A和B的坐标,由=0,则坐标原点O在圆M上;当直线l斜率存在,代入抛物线方程,利用韦达定理及向量数量积的可得=0,则坐标原点O在圆M上;

方法二:设直线l的方程x=my+2,代入抛物线方程,利用韦达定理及向量数量积的坐标运算,即可求得=0,则坐标原点O在圆M上;

(2)由题意可知:=0,根据向量数量积的坐标运算,即可求得k的值,求得M点坐标,则半径r=丨MP丨,即可求得圆的方程.

【解答】解:方法一:证明:(1)当直线l的斜率不存在时,则A(2,2),B(2,﹣2),

=(2,2),=(2,﹣2),则=0,

则坐标原点O在圆M上;

当直线l的斜率存在,设直线l的方程y=k(x﹣2),A(x1,y1),B(x2,y2),

,整理得:k2x2﹣(4k2+2)x+4k2=0,

则x1x2=4,4x1x2=y12y22=(y1y2)2,由y1y2<0,

则y1y2=﹣4,

=x1x2+y1y2=0,

,则坐标原点O在圆M上,

综上可知:坐标原点O在圆M上;

方法二:设直线l的方程x=my+2,

,整理得:y2﹣2my﹣4=0,A(x1,y1),B(x2,y2),

则y1y2=﹣4,

则(y1y2)2=4x1x2,则x1x2=4,则=x1x2+y1y2=0,

,则坐标原点O在圆M上,

∴坐标原点O在圆M上;

(2)由(1)可知:x1x2=4,x1+x2=,y1+y2=,y1y2=﹣4,

圆M过点P(4,﹣2),则=(4﹣x1,﹣2﹣y1),=(4﹣x2,﹣2﹣y2),

=0,则(4﹣x1)(4﹣x2)+(﹣2﹣y1)(﹣2﹣y2)=0,

整理得:k2+k﹣2=0,解得:k=﹣2,k=1,

当k=﹣2时,直线l的方程为y=﹣2x+4,

则x1+x2=,y1+y2=﹣1,

则M(,﹣),半径为r=丨MP丨==

∴圆M的方程(x﹣)2+(y+)2=

当直线斜率k=1时,直线l的方程为y=x﹣2,

同理求得M(3,1),则半径为r=丨MP丨=

∴圆M的方程为(x﹣3)2+(y﹣1)2=10,

综上可知:直线l的方程为y=﹣2x+4,圆M的方程(x﹣)2+(y+)2=

或直线l的方程为y=x﹣2,圆M的方程为(x﹣3)2+(y﹣1)2=10.

【点评】本题考查直线与抛物线的位置关系,考查韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441