订单查询
首页 其他文档
全国统一高考数学试卷(理科)
大小:0B 24页 发布时间: 2024-01-31 08:24:33 13.29k 12.03k

8.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()

A. B. C. D.

【考点】CB:古典概型及其概率计算公式.菁优网版权所有

【专题】36:整体思想;4O:定义法;5I:概率与统计.

【分析】利用列举法先求出不超过30的所有素数,利用古典概型的概率公式进行计算即可.

【解答】解:在不超过30的素数中有,2,3,5,7,11,13,17,19,23,29共10个,

从中选2个不同的数有=45种,

和等于30的有(7,23),(11,19),(13,17),共3种,

则对应的概率P==

故选:C.

【点评】本题主要考查古典概型的概率的计算,求出不超过30的素数是解决本题的关键.

9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()

A. B. C. D.

【考点】LM:异面直线及其所成的角.菁优网版权所有

【专题】11:计算题;31:数形结合;41:向量法;5G:空间角.

【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD1与DB1所成角的余弦值.

【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,

∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,

AA1=

∴A(1,0,0),D1(0,0,),D(0,0,0),

B1(1,1,),

=(﹣1,0,),=(1,1,),

设异面直线AD1与DB1所成角为θ,

则cosθ===

∴异面直线AD1与DB1所成角的余弦值为

故选:C.

【点评】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()

A. B. C. D.π

【考点】GP:两角和与差的三角函数;H5:正弦函数的单调性.菁优网版权所有

【专题】33:函数思想;4R:转化法;56:三角函数的求值.

【分析】利用两角和差的正弦公式化简f(x),由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[],结合已知条件即可求出a的最大值.

【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=

,k∈Z,

,k∈Z,

取k=0,得f(x)的一个减区间为[],

由f(x)在[﹣a,a]是减函数,

,∴

则a的最大值是

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441