8.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()
A. B. C. D.
【考点】CB:古典概型及其概率计算公式.菁优网版权所有
【专题】36:整体思想;4O:定义法;5I:概率与统计.
【分析】利用列举法先求出不超过30的所有素数,利用古典概型的概率公式进行计算即可.
【解答】解:在不超过30的素数中有,2,3,5,7,11,13,17,19,23,29共10个,
从中选2个不同的数有=45种,
和等于30的有(7,23),(11,19),(13,17),共3种,
则对应的概率P==,
故选:C.
【点评】本题主要考查古典概型的概率的计算,求出不超过30的素数是解决本题的关键.
9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()
A. B. C. D.
【考点】LM:异面直线及其所成的角.菁优网版权所有
【专题】11:计算题;31:数形结合;41:向量法;5G:空间角.
【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD1与DB1所成角的余弦值.
【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,
AA1=,
∴A(1,0,0),D1(0,0,),D(0,0,0),
B1(1,1,),
=(﹣1,0,),=(1,1,),
设异面直线AD1与DB1所成角为θ,
则cosθ===,
∴异面直线AD1与DB1所成角的余弦值为.
故选:C.
【点评】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.
10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()
A. B. C. D.π
【考点】GP:两角和与差的三角函数;H5:正弦函数的单调性.菁优网版权所有
【专题】33:函数思想;4R:转化法;56:三角函数的求值.
【分析】利用两角和差的正弦公式化简f(x),由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],结合已知条件即可求出a的最大值.
【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=,
由,k∈Z,
得,k∈Z,
取k=0,得f(x)的一个减区间为[,],
由f(x)在[﹣a,a]是减函数,
得,∴.
则a的最大值是.