②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最小值为60°;
其中正确的是②③.(填写所有正确结论的编号)
【考点】MI:直线与平面所成的角.菁优网版权所有
【专题】11:计算题;31:数形结合;41:向量法;5F:空间位置关系与距离.
【分析】由题意知,a、b、AC三条直线两两相互垂直,构建如图所示的边长为1的正方体,|AC|=1,|AB|=,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,利用向量法能求出结果.
【解答】解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,
不妨设图中所示正方体边长为1,
故|AC|=1,|AB|=,\
斜边AB以直线AC为旋转轴,则A点保持不变,
B点的运动轨迹是以C为圆心,1为半径的圆,
以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,
则D(1,0,0),A(0,0,1),直线a的方向单位向量=(0,1,0),||=1,
直线b的方向单位向量=(1,0,0),||=1,
设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),
其中θ为B′C与CD的夹角,θ∈[0,2π),
∴AB′在运动过程中的向量,=(cosθ,sinθ,﹣1),||=,
设与所成夹角为α∈[0,],
则cosα==|sinθ|∈[0,],
∴α∈[,],∴③正确,④错误.
设与所成夹角为β∈[0,],
cosβ===|cosθ|,
当与夹角为60°时,即α=,
|sinθ|===,
∵cos2θ+sin2θ=1,∴cosβ=|cosθ|=,
∵β∈[0,],∴β=,此时与的夹角为60°,
∴②正确,①错误.
故答案为:②③.
【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:60分。
17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.
(1)求c;
(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.
【考点】HT:三角形中的几何计算.菁优网版权所有
【专题】11:计算题;35:转化思想;4O:定义法;58:解三角形.
【分析】(1)先根据同角的三角函数的关系求出A,再根据余弦定理即可求出,
(2)先根据夹角求出cosC,求出CD的长,得到S△ABD=S△ABC.
【解答】解:(1)∵sinA+cosA=0,