订单查询
首页 其他文档
全国统一高考数学试卷(文科)(新课标ⅲ)
大小:0B 13页 发布时间: 2024-01-31 08:31:47 14.8k 12.88k

【解答】(Ⅰ)证明:连接RF,PF,

由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,

∴∠PFQ=90°,

∵R是PQ的中点,

∴RF=RP=RQ,

∴△PAR≌△FAR,

∴∠PAR=∠FAR,∠PRA=∠FRA,

∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,

∴∠FQB=∠PAR,

∴∠PRA=∠PQF,

∴AR∥FQ.

(Ⅱ)设A(x1,y1),B(x2,y2),

F(,0),准线为 x=﹣

S△PQF=|PQ|=|y1﹣y2|,

设直线AB与x轴交点为N,

∴S△ABF=|FN||y1﹣y2|,

∵△PQF的面积是△ABF的面积的两倍,

∴2|FN|=1,∴xN=1,即N(1,0).

设AB中点为M(x,y),由=2(x1﹣x2),

=

=,即y2=x﹣1.

∴AB中点轨迹方程为y2=x﹣1.

【点评】本题考查抛物线的方程与性质,考查轨迹方程,考查学生的计算能力,属于中档题.

21.(12分)设函数f(x)=lnx﹣x+1.

(1)讨论f(x)的单调性;

(2)证明当x∈(1,+∞)时,1<<x;

(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>cx.

【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.菁优网版权所有

【专题】35:转化思想;48:分析法;53:导数的综合应用;59:不等式的解法及应用.

【分析】(1)求出导数,由导数大于0,可得增区间;导数小于0,可得减区间,注意函数的定义域;

(2)由题意可得即证lnx<x﹣1<xlnx.运用(1)的单调性可得lnx<x﹣1,设F(x)=xlnx﹣x+1,x>1,求出单调性,即可得到x﹣1<xlnx成立;

(3)设G(x)=1+(c﹣1)x﹣cx,求G(x)的二次导数,判断G′(x)的单调性,进而证明原不等式.

【解答】解:(1)函数f(x)=lnx﹣x+1的导数为f′(x)=﹣1,

由f′(x)>0,可得0<x<1;由f′(x)<0,可得x>1.

即有f(x)的增区间为(0,1);减区间为(1,+∞);

(2)证明:当x∈(1,+∞)时,1<<x,即为lnx<x﹣1<xlnx.

由(1)可得f(x)=lnx﹣x+1在(1,+∞)递减,

可得f(x)<f(1)=0,即有lnx<x﹣1;

设F(x)=xlnx﹣x+1,x>1,F′(x)=1+lnx﹣1=lnx,

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441