【点评】本题主要考查推理和证明的应用,根据平均最高气温和平均最低气温的雷达图,利用图象法进行判断是解决本题的关键.
5.(5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()
A. B. C. D.
【考点】CC:列举法计算基本事件数及事件发生的概率.菁优网版权所有
【专题】11:计算题;38:对应思想;4B:试验法;5I:概率与统计.
【分析】列举出从M,I,N中任取一个字母,再从1,2,3,4,5中任取一个数字的基本事件数,然后由随机事件发生的概率得答案.
【解答】解:从M,I,N中任取一个字母,再从1,2,3,4,5中任取一个数字,取法总数为:
(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)共15种.
其中只有一个是小敏的密码前两位.
由随机事件发生的概率可得,小敏输入一次密码能够成功开机的概率是.
故选:C.
【点评】本题考查随机事件发生的概率,关键是列举基本事件总数时不重不漏,是基础题.
6.(5分)若tanθ=,则cos2θ=()
A. B. C. D.
【考点】GF:三角函数的恒等变换及化简求值.菁优网版权所有
【专题】11:计算题;35:转化思想;56:三角函数的求值.
【分析】原式利用二倍角的余弦函数公式变形,再利用同角三角函数间的基本关系化简,将tanθ的值代入计算即可求出值.
【解答】解:∵tanθ=,
∴cos2θ=2cos2θ﹣1=﹣1=﹣1=.
故选:D.
【点评】此题考查了二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.
7.(5分)已知a=,b=,c=,则()
A.b<a<c B.a<b<c C.b<c<a D.c<a<b
【考点】4Y:幂函数的单调性、奇偶性及其应用.菁优网版权所有
【专题】35:转化思想;4R:转化法;51:函数的性质及应用.
【分析】b==,c==,结合幂函数的单调性,可比较a,b,c,进而得到答案.
【解答】解:∵a==,
b=,
c==,
综上可得:b<a<c,
故选:A.
【点评】本题考查的知识点是指数函数的单调性,幂函数的单调性,是函数图象和性质的综合应用,难度中档.
8.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()
A.3 B.4 C.5 D.6
【考点】EF:程序框图.菁优网版权所有
【专题】11:计算题;27:图表型;4B:试验法;5K:算法和程序框图.
【分析】模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.
【解答】解:模拟执行程序,可得
a=4,b=6,n=0,s=0