【分析】令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ),依题意可得2sin(x﹣φ)=2sin(x﹣),由﹣φ=2kπ﹣(k∈Z),可得答案.
【解答】解:∵y=sinx﹣cosx=2sin(x﹣),
令f(x)=2sinx,
则f(x﹣φ)=2in(x﹣φ)(φ>0),
依题意可得2sin(x﹣φ)=2sin(x﹣),
故﹣φ=2kπ﹣(k∈Z),
即φ=﹣2kπ+(k∈Z),
当k=0时,正数φmin=,
故答案为:.
【点评】本题考查函数y=sinx的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象,得到﹣φ=2kπ﹣(k∈Z)是关键,属于中档题.
15.(5分)已知直线l:x﹣y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.则|CD|=4.
【考点】J8:直线与圆相交的性质.菁优网版权所有
【专题】11:计算题;34:方程思想;49:综合法;5B:直线与圆.
【分析】先求出|AB|,再利用三角函数求出|CD|即可.
【解答】解:由题意,圆心到直线的距离d==3,
∴|AB|=2=2,
∵直线l:x﹣y+6=0
∴直线l的倾斜角为30°,
∵过A,B分别作l的垂线与x轴交于C,D两点,
∴|CD|==4.
故答案为:4.
【点评】本题考查直线与圆的位置关系,考查弦长的计算,考查学生的计算能力,比较基础.
16.(5分)已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f(x)在点(1,2)处的切线方程是y=2x.
【考点】6H:利用导数研究曲线上某点切线方程.菁优网版权所有
【专题】11:计算题;33:函数思想;4A:数学模型法;53:导数的综合应用.
【分析】由已知函数的奇偶性结合x≤0时的解析式求出x>0时的解析式,求出导函数,得到f′(1),然后代入直线方程的点斜式得答案.
【解答】解:已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,
设x>0,则﹣x<0,
∴f(x)=f(﹣x)=ex﹣1+x,
则f′(x)=ex﹣1+1,
f′(1)=e0+1=2.
∴曲线y=f(x)在点(1,2)处的切线方程是y﹣2=2(x﹣1).
即y=2x.
故答案为:y=2x.
【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查了函数解析式的求解及常用方法,是中档题.
三、解答题(共5小题,满分60分)
17.(12分)已知各项都为正数的数列{an}满足a1=1,an2﹣(2an+1﹣1)an﹣2an+1=0.
(1)求a2,a3;
(2)求{an}的通项公式.
【考点】8H:数列递推式.菁优网版权所有