订单查询
首页 其他文档
全国统一高考数学试卷(理科)(新课标ⅲ)
大小:0B 13页 发布时间: 2024-01-31 08:47:50 16.69k 15.39k

∴y关于t的回归方程=0.10t+0.92,

2016年对应的t值为9,

=0.10×9+0.92=1.82,

预测2016年我国生活垃圾无害化处理量为1.82亿吨.

【点评】本题考查的知识点是线性回归方程,回归分析,计算量比较大,计算时要细心.

19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.

(1)证明:MN∥平面PAB;

(2)求直线AN与平面PMN所成角的正弦值.

【考点】LS:直线与平面平行;MI:直线与平面所成的角.菁优网版权所有

【专题】15:综合题;35:转化思想;44:数形结合法;5F:空间位置关系与距离;5G:空间角.

【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;

法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;

(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.

【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,

∵N为PC的中点,

∴NG∥BC,且NG=

又AM=,BC=4,且AD∥BC,

∴AM∥BC,且AM=BC,

则NG∥AM,且NG=AM,

∴四边形AMNG为平行四边形,则NM∥AG,

∵AG⊂平面PAB,NM⊄平面PAB,

∴MN∥平面PAB;

法二、

在△PAC中,过N作NE⊥AC,垂足为E,连接ME,

在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=

∵AD∥BC,

∴cos,则sin∠EAM=

在△EAM中,

∵AM=,AE=

由余弦定理得:EM==

∴cos∠AEM=

而在△ABC中,cos∠BAC=

∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,

∴AB∥EM,则EM∥平面PAB.

由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,

∴NE∥PA,则NE∥平面PAB.

∵NE∩EM=E,

∴平面NEM∥平面PAB,则MN∥平面PAB;

(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC•AM•cos∠MAC=

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441