∵B=90°,且a=,
∴a2+c2=b2=2ac,解得a=c=.
∴S△ABC==1.
【点评】本题考查了正弦定理余弦定理、勾股定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
18.(12分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.
(Ⅰ)证明:平面AEC⊥平面BED;
(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.
【考点】LE:棱柱、棱锥、棱台的侧面积和表面积;LY:平面与平面垂直.菁优网版权所有
【专题】5F:空间位置关系与距离.
【分析】(Ⅰ)根据面面垂直的判定定理即可证明:平面AEC⊥平面BED;
(Ⅱ)根据三棱锥的条件公式,进行计算即可.
【解答】证明:(Ⅰ)∵四边形ABCD为菱形,
∴AC⊥BD,
∵BE⊥平面ABCD,
∴AC⊥BE,
则AC⊥平面BED,
∵AC⊂平面AEC,
∴平面AEC⊥平面BED;
解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC=x,GB=GD=,
∵BE⊥平面ABCD,
∴BE⊥BG,则△EBG为直角三角形,
∴EG=AC=AG=x,
则BE==x,
∵三棱锥E﹣ACD的体积V===,
解得x=2,即AB=2,
∵∠ABC=120°,
∴AC2=AB2+BC2﹣2AB•BCcosABC=4+4﹣2×=12,
即AC=,
在三个直角三角形EBA,EBD,EBC中,斜边AE=EC=ED,
∵AE⊥EC,∴△EAC为等腰三角形,
则AE2+EC2=AC2=12,
即2AE2=12,
∴AE2=6,
则AE=,
∴从而得AE=EC=ED=,
∴△EAC的面积S==3,
在等腰三角形EAD中,过E作EF⊥AD于F,
则AE=,AF==,
则EF=,