【分析】利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x的范围求出t的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围.
【解答】解:由f(x)=cos2x+asinx
=﹣2sin2x+asinx+1,
令t=sinx,
则原函数化为y=﹣2t2+at+1.
∵x∈(,)时f(x)为减函数,
则y=﹣2t2+at+1在t∈(,1)上为减函数,
∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=.
∴,解得:a≤2.
∴a的取值范围是(﹣∞,2].
故答案为:(﹣∞,2].
【点评】本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题.
三、解答题
17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.
【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.菁优网版权所有
【专题】58:解三角形.
【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.
【解答】解:∵3acosC=2ccosA,
由正弦定理可得3sinAcosC=2sinCcosA,
∴3tanA=2tanC,
∵tanA=,
∴2tanC=3×=1,解得tanC=.
∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,
∵B∈(0,π),
∴B=
【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.
18.(12分)等差数列{an}的前n项和为Sn,已知a1=13,a2为整数,且Sn≤S4.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.
【考点】8E:数列的求和.菁优网版权所有
【专题】55:点列、递归数列与数学归纳法.
【分析】(1)通过Sn≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=﹣4,进而可得结论;
(2)通过an=13﹣3n,分离分母可得bn=(﹣),并项相加即可.
【解答】解:(1)在等差数列{an}中,由Sn≤S4得:
a4≥0,a5≤0,
又∵a1=13,
∴,解得﹣≤d≤﹣,
∵a2为整数,∴d=﹣4,
∴{an}的通项为:an=17﹣4n;
(2)∵an=17﹣4n,