六、解答题(共1小题,满分0分)
24.设函数f(x)=|x+|+|x﹣a|(a>0).
(Ⅰ)证明:f(x)≥2;
(Ⅱ)若f(3)<5,求a的取值范围.
【考点】R5:绝对值不等式的解法.菁优网版权所有
【专题】59:不等式的解法及应用.
【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.
(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.
【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,
故不等式f(x)≥2成立.
(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,
∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.
当0<a≤3时,不等式即 6﹣a+<5,即 a2﹣a﹣1>0,求得<a≤3.
综上可得,a的取值范围(,).
【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.