【点评】本题主要考查集合的基本运算,比较基础.
2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()
A.﹣5 B.5 C.﹣4+i D.﹣4﹣i
【考点】A5:复数的运算.菁优网版权所有
【专题】5N:数系的扩充和复数.
【分析】根据复数的几何意义求出z2,即可得到结论.
【解答】解:z1=2+i对应的点的坐标为(2,1),
∵复数z1,z2在复平面内的对应点关于虚轴对称,
∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),
则对应的复数,z2=﹣2+i,
则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,
故选:A.
【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.
3.(5分)设向量,满足|+|=,|﹣|=,则•=()
A.1 B.2 C.3 D.5
【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有
【专题】5A:平面向量及应用.
【分析】将等式进行平方,相加即可得到结论.
【解答】解:∵|+|=,|﹣|=,
∴分别平方得+2•+=10,﹣2•+=6,
两式相减得4•=10﹣6=4,
即•=1,
故选:A.
【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.
4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()
A.5 B. C.2 D.1
【考点】HR:余弦定理.菁优网版权所有
【专题】56:三角函数的求值.
【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.
【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,
∴S=acsinB=,即sinB=,
当B为钝角时,cosB=﹣=﹣,
利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,
当B为锐角时,cosB==,
利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,
此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,
则AC=.
故选:B.
【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.
5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()