【考点】LG:球的体积和表面积;LR:球内接多面体.菁优网版权所有
【专题】11:计算题;5F:空间位置关系与距离.
【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.
【解答】解:设球的半径为R,则
∵棱锥的高为4,底面边长为2,
∴R2=(4﹣R)2+()2,
∴R=,
∴球的表面积为4π•()2=.
故选:A.
【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.
11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()
A.2 B.2 C.4 D.4
【考点】KC:双曲线的性质.菁优网版权所有
【专题】5D:圆锥曲线的定义、性质与方程.
【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.
【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,
∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,
则c=2a,b=,
∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,
∴d=,
即,
解得c=2,
则焦距为2c=4,
故选:C.
【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.
12.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()
A.﹣2 B.﹣1 C.0 D.1
【考点】3K:函数奇偶性的性质与判断.菁优网版权所有
【专题】51:函数的性质及应用.
【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.
【解答】解:∵f(x+2)为偶函数,f(x)是奇函数,
∴设g(x)=f(x+2),
则g(﹣x)=g(x),
即f(﹣x+2)=f(x+2),
∵f(x)是奇函数,
∴f(﹣x+2)=f(x+2)=﹣f(x﹣2),
即f(x+4)=﹣f(x),f(x+8)=f(x+4+4)=﹣f(x+4)=f(x),
则f(8)=f(0)=0,f(9)=f(1)=1,
∴f(8)+f(9)=0+1=1,