【考点】LG:球的体积和表面积.菁优网版权所有
【专题】16:压轴题;5F:空间位置关系与距离.
【分析】本题考查的知识点是球的表面积公式,设球的半径为R,根据题意知由与球心距离为R的平面截球所得的截面圆的面积是π,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积.
【解答】解:设球的半径为R,∵AH:HB=1:2,∴平面α与球心的距离为R,
∵α截球O所得截面的面积为π,
∴d=R时,r=1,
故由R2=r2+d2得R2=12+(R)2,∴R2=
∴球的表面积S=4πR2=.
故答案为:.
【点评】若球的截面圆半径为r,球心距为d,球半径为R,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,即R2=r2+d2
16.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.
【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.菁优网版权所有
【专题】16:压轴题;56:三角函数的求值.
【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.
【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),
∵x=θ时,函数f(x)取得最大值,
∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,
又sin2θ+cos2θ=1,
联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.
故答案为:﹣
【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.
三.解答题:解答应写出文字说明,证明过程或演算步骤.
17.(12分)已知等差数列{an}的前n项和Sn满足S3=0,S5=﹣5.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求数列{}的前n项和.
【考点】84:等差数列的通项公式;8E:数列的求和.菁优网版权所有
【专题】54:等差数列与等比数列.
【分析】(Ⅰ)设出等差数列{an}的首项和公差,直接由S3=0,S5=﹣5列方程组求出,然后代入等差数列的通项公式整理;
(Ⅱ)把(Ⅰ)中求出的通项公式,代入数列{}的通项中进行列项整理,则利用裂项相消可求数列{}的前n项和.
【解答】解:(Ⅰ)设数列{an}的首项为a1,公差为d,则.
由已知可得,即,解得a1=1,d=﹣1,
故{an}的通项公式为an=a1+(n﹣1)d=1+(n﹣1)•(﹣1)=2﹣n;
(Ⅱ)由(Ⅰ)知.
从而数列{}的前n项和
Sn=
=.
【点评】本题考查了等差数列的通项公式,考查了裂项相消法求数列的和,是中档题.
18.(12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5