订单查询
首页 其他文档
全国统一高考数学试卷(理科)
大小:0B 12页 发布时间: 2024-01-31 09:54:32 14.64k 12.72k

20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.

(1)记20件产品中恰有2件不合格品的概率为f(p),求f (p)的最大值点p0.

(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.

(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;

(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.菁

【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.

【分析】(1)求出f(p)=,则

=,利用导数性质能求出f (p)的最大值点p0=0.1.

(2)(i)由p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),再由X=20×2+25Y,即X=40+25Y,能求出E(X).

(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,E(X)=490>400,从而应该对余下的产品进行检验.

【解答】解:(1)记20件产品中恰有2件不合格品的概率为f(p),

则f(p)=

=

令f′(p)=0,得p=0.1,

当p∈(0,0.1)时,f′(p)>0,

当p∈(0.1,1)时,f′(p)<0,

∴f (p)的最大值点p0=0.1.

(2)(i)由(1)知p=0.1,

令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),

X=20×2+25Y,即X=40+25Y,

∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.

(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,

∵E(X)=490>400,

∴应该对余下的产品进行检验.

【点评】本题考查概率的求法及应用,考查离散型随机变量的数学期望的求法,考查是否该对这箱余下的所有产品作检验的判断与求法,考查二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.

21.(12分)已知函数f(x)=﹣x+alnx.

(1)讨论f(x)的单调性;

(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.

【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.菁优网版权所有

【专题】32:分类讨论;4R:转化法;53:导数的综合应用.

【分析】(1)求出函数的定义域和导数,利用函数单调性和导数之间的关系进行求解即可.

(2)将不等式进行等价转化,构造新函数,研究函数的单调性和最值即可得到结论.

【解答】解:(1)函数的定义域为(0,+∞),

函数的导数f′(x)=﹣﹣1+=﹣

设g(x)=x2﹣ax+1,

当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,

当a>0时,判别式△=a2﹣4,

①当0<a≤2时,△≤0,即g(x)>0,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,

②当a>2时,x,f′(x),f(x)的变化如下表:

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441