【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.
转换为直角坐标方程为:x2+y2+2x﹣3=0,
转换为标准式为:(x+1)2+y2=4.
(2)由于曲线C1的方程为y=k|x|+2,则:该射线关于y轴对称,且恒过定点(0,2).
由于该射线与曲线C2的极坐标有且仅有三个公共点.
所以:必有一直线相切,一直线相交.
则:圆心到直线y=kx+2的距离等于半径2.
故:,或
解得:k=或0,(0舍去)或k=或0
经检验,直线与曲线C2没有公共点.
故C1的方程为:.
【点评】本体考察知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和曲线的位置关系的应用,点到直线的距离公式的应用.
[选修4-5:不等式选讲](10分)
23.已知f(x)=|x+1|﹣|ax﹣1|.
(1)当a=1时,求不等式f(x)>1的解集;
(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.
【考点】R5:绝对值不等式的解法.菁优网版权所有
【专题】15:综合题;38:对应思想;4R:转化法;5T:不等式.
【分析】(1)去绝对值,化为分段函数,即可求出不等式的解集,
(2)当x∈(0,1)时不等式f(x)>x成立,转化为即|ax﹣1|<1,即0<ax<2,转化为a<,且a>0,即可求出a的范围.
【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=,
由f(x)>1,
∴或,
解得x>,
故不等式f(x)>1的解集为(,+∞),
(2)当x∈(0,1)时不等式f(x)>x成立,
∴|x+1|﹣|ax﹣1|﹣x>0,
即x+1﹣|ax﹣1|﹣x>0,
即|ax﹣1|<1,
∴﹣1<ax﹣1<1,
∴0<ax<2,
∵x∈(0,1),
∴a>0,
∴0<x<,
∴a<
∵>2,
∴0<a≤2,
故a的取值范围为(0,2].
【点评】本题考查了绝对值不等式的解法和含参数的取值范围,考查了运算能力和转化能力,属于中档题.