【分析】先根据数列的递推公式可得{an}是以﹣1为首项,以2为公比的等比数列,再根据求和公式计算即可.
【解答】解:Sn为数列{an}的前n项和,Sn=2an+1,①
当n=1时,a1=2a1+1,解得a1=﹣1,
当n≥2时,Sn﹣1=2an﹣1+1,②,
由①﹣②可得an=2an﹣2an﹣1,
∴an=2an﹣1,
∴{an}是以﹣1为首项,以2为公比的等比数列,
∴S6==﹣63,
故答案为:﹣63
【点评】本题考查了数列的递推公式和等比数列的求和公式,属于基础题.
15.(5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有16种.(用数字填写答案)
【考点】D9:排列、组合及简单计数问题.菁优网版权所有
【专题】11:计算题;38:对应思想;4O:定义法;5O:排列组合.
【分析】方法一:直接法,分类即可求出,
方法二:间接法,先求出没有限制的种数,再排除全是男生的种数.
【解答】解:方法一:直接法,1女2男,有C21C42=12,2女1男,有C22C41=4
根据分类计数原理可得,共有12+4=16种,
方法二,间接法:C63﹣C43=20﹣4=16种,
故答案为:16
【点评】本题考查了分类计数原理,属于基础题
16.(5分)已知函数f(x)=2sinx+sin2x,则f(x)的最小值是.
【考点】6E:利用导数研究函数的最值;HW:三角函数的最值.菁优网版权所有
【专题】11:计算题;34:方程思想;49:综合法;53:导数的综合应用;56:三角函数的求值.
【分析】由题意可得T=2π是f(x)的一个周期,问题转化为f(x)在[0,2π)上的最小值,求导数计算极值和端点值,比较可得.
【解答】解:由题意可得T=2π是f(x)=2sinx+sin2x的一个周期,
故只需考虑f(x)=2sinx+sin2x在[0,2π)上的值域,
先来求该函数在[0,2π)上的极值点,
求导数可得f′(x)=2cosx+2cos2x
=2cosx+2(2cos2x﹣1)=2(2cosx﹣1)(cosx+1),
令f′(x)=0可解得cosx=或cosx=﹣1,
可得此时x=,π或 ;
∴y=2sinx+sin2x的最小值只能在点x=,π或 和边界点x=0中取到,
计算可得f( )=,f(π)=0,f( )=﹣,f(0)=0,
∴函数的最小值为﹣,
故答案为:.
【点评】本题考查三角函数恒等变换,涉及导数法求函数区间的最值,属中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
17.(12分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.
(1)求cos∠ADB;
(2)若DC=2,求BC.