(2)==﹣.利用裂项求和方法即可得出.
【解答】解:(1)数列{an}满足a1+3a2+…+(2n﹣1)an=2n.
n≥2时,a1+3a2+…+(2n﹣3)an﹣1=2(n﹣1).
∴(2n﹣1)an=2.∴an=.
当n=1时,a1=2,上式也成立.
∴an=.
(2)==﹣.
∴数列{}的前n项和=++…+=1﹣=.
【点评】本题考查了数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.
18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)
天数216362574
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
【考点】CB:古典概型及其概率计算公式;CH:离散型随机变量的期望与方差.菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.
【分析】(1)由前三年六月份各天的最高气温数据,求出最高气温位于区间[20,25)和最高气温低于20的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率.
(2)当温度大于等于25°C时,需求量为500,求出Y=900元;当温度在[20,25)°C时,需求量为300,求出Y=300元;当温度低于20°C时,需求量为200,求出Y=﹣100元,从而当温度大于等于20时,Y>0,由此能估计估计Y大于零的概率.
【解答】解:(1)由前三年六月份各天的最高气温数据,
得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,
根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.
如果最高气温不低于25,需求量为500瓶,
如果最高气温位于区间[20,25),需求量为300瓶,
如果最高气温低于20,需求量为200瓶,
∴六月份这种酸奶一天的需求量不超过300瓶的概率p==.
(2)当温度大于等于25°C时,需求量为500,
Y=450×2=900元,
当温度在[20,25)°C时,需求量为300,
Y=300×2﹣(450﹣300)×2=300元,
当温度低于20°C时,需求量为200,
Y=400﹣(450﹣200)×2=﹣100元,
当温度大于等于20时,Y>0,
由前三年六月份各天的最高气温数据,得当温度大于等于20°C的天数有:
90﹣(2+16)=72,
∴估计Y大于零的概率P=.
【点评】本题考查概率的求法,考查利润的所有可能取值的求法,考查函数、古典概型等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.
19.(12分)如图四面体ABCD中,△ABC是正三角形,AD=CD.
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.