17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.
(1)求cosB;
(2)若a+c=6,△ABC的面积为2,求b.
【考点】GS:二倍角的三角函数;HP:正弦定理.菁优网版权所有
【专题】11:计算题;35:转化思想;4R:转化法;58:解三角形.
【分析】(1)利用三角形的内角和定理可知A+C=π﹣B,再利用诱导公式化简sin(A+C),利用降幂公式化简8sin2,结合sin2B+cos2B=1,求出cosB,
(2)由(1)可知sinB=,利用勾面积公式求出ac,再利用余弦定理即可求出b.
【解答】解:(1)sin(A+C)=8sin2,
∴sinB=4(1﹣cosB),
∵sin2B+cos2B=1,
∴16(1﹣cosB)2+cos2B=1,
∴16(1﹣cosB)2+cos2B﹣1=0,
∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,
∴(17cosB﹣15)(cosB﹣1)=0,
∴cosB=;
(2)由(1)可知sinB=,
∵S△ABC=ac•sinB=2,
∴ac=,
∴b2=a2+c2﹣2accosB=a2+c2﹣2××
=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,
∴b=2.
【点评】本题考查了三角形的内角和定理,三角形的面积公式,二倍角公式和同角的三角函数的关系,属于中档题
18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:
(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg箱产量≥50kg
旧养殖法
新养殖法
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=.
【考点】B8:频率分布直方图;BE:用样本的数字特征估计总体的数字特征;BL:独立性检验.菁优网版权所有
【专题】31:数形结合;44:数形结合法;5I:概率与统计.
【分析】(1)由题意可知:P(A)=P(BC)=P(B)P(C),分布求得发生的频率,即可求得其概率;
(2)完成2×2列联表:求得观测值,与参考值比较,即可求得有99%的把握认为箱产量与养殖方法有关:
(3)根据频率分布直方图即可求得其中位数.
【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,