由P(A)=P(BC)=P(B)P(C),
则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,
故P(B)的估计值0.62,
新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,
故P(C)的估计值为,
则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;
∴A发生的概率为0.4092;
(2)2×2列联表:
箱产量<50kg 箱产量≥50kg 总计
旧养殖法 62 38 100
新养殖法 34 66 100
总计 96 104 200
则K2=≈15.705,
由15.705>6.635,
∴有99%的把握认为箱产量与养殖方法有关;
(3)由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:
(0.004+0.020+0.044)×5=0.34,
箱产量低于55kg的直方图面积为:
(0.004+0.020+0.044+0.068)×5=0.68>0.5,
故新养殖法产量的中位数的估计值为:50+≈52.35(kg),
新养殖法箱产量的中位数的估计值52.35(kg).
【点评】本题考查频率分布直方图的应用,考查独立性检验,考查计算能力,属于中档题.
19.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.
(1)证明:直线CE∥平面PAB;
(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.
【考点】LS:直线与平面平行;MJ:二面角的平面角及求法.菁优网版权所有
【专题】31:数形结合;35:转化思想;49:综合法;5F:空间位置关系与距离;5G:空间角.
【分析】(1)取PA的中点F,连接EF,BF,通过证明CE∥BF,利用直线与平面平行的判定定理证明即可.
(2)利用已知条件转化求解M到底面的距离,作出二面角的平面角,然后求解二面角M﹣AB﹣D的余弦值即可.
【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,
所以EFAD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,
∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,
∴直线CE∥平面PAB;
(2)解:四棱锥P﹣ABCD中,
侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,
∠BAD=∠ABC=90°,E是PD的中点.
取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,
∴∠PCO=60°,直线BM与底面ABCD所成角为45°,
可得:BN=MN,CN=MN,BC=1,