(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.9510.129.969.9610.019.929.9810.04
10.269.9110.1310.029.2210.0410.059.95
经计算得==9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.
【考点】CP:正态分布曲线的特点及曲线所表示的意义.菁优网版权所有
【专题】11:计算题;35:转化思想;4A:数学模型法;5I:概率与统计.
【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;
(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;
(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.
【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,
则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,
因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,
所以P(X≥1)=1﹣P(X=0)=0.0408,
又因为X~B(16,0.0026),
所以E(X)=16×0.0026=0.0416;
(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.
(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个
零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.
剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为
(16×9.97﹣9.22)=10.02,
因此μ的估计值为10.02.
2=16×0.2122+16×9.972≈1591.134,
剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为
(1591.134﹣9.222﹣15×10.022)≈0.008,
因此σ的估计值为≈0.09.
【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.
20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.
【考点】K3:椭圆的标准方程;KI:圆锥曲线的综合.菁优网版权所有
【专题】14:证明题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.
【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.
(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).
【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,
又P4的横坐标为1,∴椭圆必不过P1(1,1),
∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.
把P2(0,1),P3(﹣1,)代入椭圆C,得:
,解得a2=4,b2=1,