∴椭圆C的方程为=1.
证明:(2)①当斜率不存在时,设l:x=m,A(m,yA),B(m,﹣yA),
∵直线P2A与直线P2B的斜率的和为﹣1,
∴===﹣1,
解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.
②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),
联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,
,x1x2=,
则==
===﹣1,又t≠1,
∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,
∴直线l的方程为y=kx﹣2k﹣1,
当x=2时,y=﹣1,
∴l过定点(2,﹣1).
【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.
21.(12分)已知函数f(x)=ae2x+(a﹣2)ex﹣x.
(1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围.
【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.菁优网版权所有
【专题】32:分类讨论;35:转化思想;4R:转化法;53:导数的综合应用.
【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;
(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.
(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;
(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.
【解答】解:(1)由f(x)=ae2x+(a﹣2)ex﹣x,求导f′(x)=2ae2x+(a﹣2)ex﹣1,
当a=0时,f′(x)=﹣2ex﹣1<0,
∴当x∈R,f(x)单调递减,
当a>0时,f′(x)=(2ex+1)(aex﹣1)=2a(ex+)(ex﹣),
令f′(x)=0,解得:x=ln,
当f′(x)>0,解得:x>ln,
当f′(x)<0,解得:x<ln,
∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;
当a<0时,f′(x)=2a(ex+)(ex﹣)<0,恒成立,
∴当x∈R,f(x)单调递减,
综上可知:当a≤0时,f(x)在R单调减函数,
当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;
(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,
当a>0时,f(x)=ae2x+(a﹣2)ex﹣x,
当x→﹣∞时,e2x→0,ex→0,
∴当x→﹣∞时,f(x)→+∞,