当x→∞,e2x→+∞,且远远大于ex和x,
∴当x→∞,f(x)→+∞,
∴函数有两个零点,f(x)的最小值小于0即可,
由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,
∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,
∴1﹣﹣ln<0,即ln+﹣1>0,
设t=,则g(t)=lnt+t﹣1,(t>0),
求导g′(t)=+1,由g(1)=0,
∴t=>1,解得:0<a<1,
∴a的取值范围(0,1).
方法二:(1)由f(x)=ae2x+(a﹣2)ex﹣x,求导f′(x)=2ae2x+(a﹣2)ex﹣1,
当a=0时,f′(x)=﹣2ex﹣1<0,
∴当x∈R,f(x)单调递减,
当a>0时,f′(x)=(2ex+1)(aex﹣1)=2a(ex+)(ex﹣),
令f′(x)=0,解得:x=﹣lna,
当f′(x)>0,解得:x>﹣lna,
当f′(x)<0,解得:x<﹣lna,
∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;
当a<0时,f′(x)=2a(ex+)(ex﹣)<0,恒成立,
∴当x∈R,f(x)单调递减,
综上可知:当a≤0时,f(x)在R单调减函数,
当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;
(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,
②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,
当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,
当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,
故f(x)没有零点,
当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,
由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,
故f(x)在(﹣∞,﹣lna)有一个零点,
假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,
由ln(﹣1)>﹣lna,
因此在(﹣lna,+∞)有一个零点.
∴a的取值范围(0,1).
【点评】本题考查导数的综合应用,考查利用导数求函数单调性及最值,考查函数零点的判断,考查计算能力,考查分类讨论思想,属于中档题.
[选修4-4,坐标系与参数方程]
22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为 ,(t为参数).
(1)若a=﹣1,求C与l的交点坐标;
(2)若C上的点到l距离的最大值为,求a.
【考点】IT:点到直线的距离公式;QH:参数方程化成普通方程.菁优网版权所有