A.A∩B={x|x<0} B.A∪B=R C.A∪B={x|x>1} D.A∩B=∅
【考点】1E:交集及其运算.菁优网版权所有
【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.
【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.
【解答】解:∵集合A={x|x<1},
B={x|3x<1}={x|x<0},
∴A∩B={x|x<0},故A正确,D错误;
A∪B={x|x<1},故B和C都错误.
故选:A.
【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.
2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()
A. B. C. D.
【考点】CF:几何概型.菁优网版权所有
【专题】35:转化思想;4O:定义法;5I:概率与统计.
【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.
【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,
则黑色部分的面积S=,
则对应概率P==,
故选:B.
【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.
3.(5分)设有下面四个命题
p1:若复数z满足∈R,则z∈R;
p2:若复数z满足z2∈R,则z∈R;
p3:若复数z1,z2满足z1z2∈R,则z1=;
p4:若复数z∈R,则∈R.
其中的真命题为()
A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p4
【考点】2K:命题的真假判断与应用;A1:虚数单位i、复数;A5:复数的运算.菁优网版权所有
【专题】2A:探究型;5L:简易逻辑;5N:数系的扩充和复数.
【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.
【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;
p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;
p3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;
p4:若复数z∈R,则=z∈R,故命题p4为真命题.
故选:B.
【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.
4.(5分)记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()
A.1 B.2 C.4 D.8
【考点】84:等差数列的通项公式;85:等差数列的前n项和.菁优网版权所有