订单查询
首页 其他文档
全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)
大小:0B 14页 发布时间: 2024-01-31 12:37:21 5.04k 4.95k

在△OAC中,由余弦定理得

||==2

即|+2|=2

故答案为:2

【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.

14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.

【考点】7C:简单线性规划.菁优网版权所有

【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.

【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.

【解答】解:由x,y满足约束条件作出可行域如图,

由图可知,目标函数的最优解为A,

联立,解得A(﹣1,1).

∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.

故答案为:﹣5.

【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

15.(5分)已知双曲线C:=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为

【考点】KC:双曲线的性质.菁优网版权所有

【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.

【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.

【解答】解:双曲线C:=1(a>0,b>0)的右顶点为A(a,0),

以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.

若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=

可得:=,即,可得离心率为:e=

故答案为:

【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.

16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.

【考点】LF:棱柱、棱锥、棱台的体积.菁优网版权所有

【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.

【分析】法一:由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABC=3,V==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.

法二:设正三角形的边长为x,则OG=,FG=SG=5﹣,SO=h===,由此能示出三棱锥的体积的最大值.

【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,

即OG的长度与BC的长度成正比,

设OG=x,则BC=2x,DG=5﹣x,

三棱锥的高h===

=3

则V===

令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441