订单查询
首页 其他文档
全国统一高考数学试卷(理科)
大小:0B 14页 发布时间: 2024-01-31 12:45:31 10.27k 9.43k

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,

故当x=ln(﹣2a)时,函数取极大值,

由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:

函数f(x)在R上至多存在一个零点,不合题意;

④若a=﹣,则ln(﹣2a)=1,

当x<1=ln(﹣2a)时,x﹣1<0,ex+2a<eln(﹣2a)+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,

当x>1时,x﹣1>0,ex+2a>eln(﹣2a)+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,

故函数f(x)在R上单调递增,

函数f(x)在R上至多存在一个零点,不合题意;

⑤若a<﹣,则ln(﹣2a)>lne=1,

当x<1时,x﹣1<0,ex+2a<eln(﹣2a)+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,

当1<x<ln(﹣2a)时,x﹣1>0,ex+2a<eln(﹣2a)+2a=0,

即f′(x)=(x﹣1)(ex+2a)<0恒成立,故f(x)单调递减,

当x>ln(﹣2a)时,x﹣1>0,ex+2a>eln(﹣2a)+2a=0,

即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,

故当x=1时,函数取极大值,

由f(1)=﹣e<0得:

函数f(x)在R上至多存在一个零点,不合题意;

综上所述,a的取值范围为(0,+∞)

证明:(Ⅱ)∵x1,x2是f(x)的两个零点,

∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,

∴﹣a==

令g(x)=,则g(x1)=g(x2)=﹣a,

∵g′(x)=

∴当x<1时,g′(x)<0,g(x)单调递减;

当x>1时,g′(x)>0,g(x)单调递增;

设m>0,则g(1+m)﹣g(1﹣m)==

设h(m)=,m>0,

则h′(m)=>0恒成立,

即h(m)在(0,+∞)上为增函数,

h(m)>h(0)=0恒成立,

即g(1+m)>g(1﹣m)恒成立,

令m=1﹣x1>0,

则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,

即x1+x2<2.

【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.

请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441