即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,
故当x=ln(﹣2a)时,函数取极大值,
由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:
函数f(x)在R上至多存在一个零点,不合题意;
④若a=﹣,则ln(﹣2a)=1,
当x<1=ln(﹣2a)时,x﹣1<0,ex+2a<eln(﹣2a)+2a=0,
即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,
当x>1时,x﹣1>0,ex+2a>eln(﹣2a)+2a=0,
即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,
故函数f(x)在R上单调递增,
函数f(x)在R上至多存在一个零点,不合题意;
⑤若a<﹣,则ln(﹣2a)>lne=1,
当x<1时,x﹣1<0,ex+2a<eln(﹣2a)+2a=0,
即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,
当1<x<ln(﹣2a)时,x﹣1>0,ex+2a<eln(﹣2a)+2a=0,
即f′(x)=(x﹣1)(ex+2a)<0恒成立,故f(x)单调递减,
当x>ln(﹣2a)时,x﹣1>0,ex+2a>eln(﹣2a)+2a=0,
即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,
故当x=1时,函数取极大值,
由f(1)=﹣e<0得:
函数f(x)在R上至多存在一个零点,不合题意;
综上所述,a的取值范围为(0,+∞)
证明:(Ⅱ)∵x1,x2是f(x)的两个零点,
∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,
∴﹣a==,
令g(x)=,则g(x1)=g(x2)=﹣a,
∵g′(x)=,
∴当x<1时,g′(x)<0,g(x)单调递减;
当x>1时,g′(x)>0,g(x)单调递增;
设m>0,则g(1+m)﹣g(1﹣m)=﹣=,
设h(m)=,m>0,
则h′(m)=>0恒成立,
即h(m)在(0,+∞)上为增函数,
h(m)>h(0)=0恒成立,
即g(1+m)>g(1﹣m)恒成立,
令m=1﹣x1>0,
则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,
即x1+x2<2.
【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]