(2)解:作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,
∵BC⊥AO,BC⊥OD,AO∩OD=O,
∴BC⊥平面AOD,
∴OH⊥BC,
∵OH⊥AD,BC∩AD=D,
∴OH⊥平面ABC,
∵∠CBB1=60°,
∴△CBB1为等边三角形,
∵BC=1,∴OD=,
∵AC⊥AB1,∴OA=B1C=,
由OH•AD=OD•OA,可得AD==,∴OH=,
∵O为B1C的中点,
∴B1到平面ABC的距离为,
∴三棱柱ABC﹣A1B1C1的高.
【点评】本题考查线面垂直的判定与性质,考查点到平面距离的计算,考查学生分析解决问题的能力,属于中档题.
20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.
【考点】%H:三角形的面积公式;J3:轨迹方程.菁优网版权所有
【专题】5B:直线与圆.
【分析】(1)由圆C的方程求出圆心坐标和半径,设出M坐标,由与数量积等于0列式得M的轨迹方程;
(2)设M的轨迹的圆心为N,由|OP|=|OM|得到ON⊥PM.求出ON所在直线的斜率,由直线方程的点斜式得到PM所在直线方程,由点到直线的距离公式求出O到l的距离,再由弦心距、圆的半径及弦长间的关系求出PM的长度,代入三角形面积公式得答案.
【解答】解:(1)由圆C:x2+y2﹣8y=0,得x2+(y﹣4)2=16,
∴圆C的圆心坐标为(0,4),半径为4.
设M(x,y),则,.
由题意可得:.
即x(2﹣x)+(y﹣4)(2﹣y)=0.
整理得:(x﹣1)2+(y﹣3)2=2.
∴M的轨迹方程是(x﹣1)2+(y﹣3)2=2.
(2)由(1)知M的轨迹是以点N(1,3)为圆心,为半径的圆,
由于|OP|=|OM|,
故O在线段PM的垂直平分线上,
又P在圆N上,
从而ON⊥PM.
∵kON=3,
∴直线l的斜率为﹣.
∴直线PM的方程为,即x+3y﹣8=0.
则O到直线l的距离为.
又N到l的距离为,