18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.
(Ⅰ)证明:G是AB的中点;
(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.
19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:
记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.
(Ⅰ)若n=19,求y与x的函数解析式;
(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;
(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.
(Ⅰ)求;
(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.
21.(12分)已知函数f(x)=(x﹣2)ex+a(x﹣1)2.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)有两个零点,求a的取值范围.
请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]
22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.
(Ⅰ)证明:直线AB与⊙O相切;
(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.
[选修4-4:坐标系与参数方程]
23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.
(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;
(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.
[选修4-5:不等式选讲]
24.已知函数f(x)=|x+1|﹣|2x﹣3|.
(Ⅰ)在图中画出y=f(x)的图象;
(Ⅱ)求不等式|f(x)|>1的解集.
参考答案与试题解析
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()
A.{1,3} B.{3,5} C.{5,7} D.{1,7}
【考点】1E:交集及其运算.菁优网版权所有
【专题】11:计算题;29:规律型;5J:集合.
【分析】直接利用交集的运算法则化简求解即可.
【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},
则A∩B={3,5}.
故选:B.