【点评】本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.
19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:
记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.
(Ⅰ)若n=19,求y与x的函数解析式;
(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;
(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
【考点】3H:函数的最值及其几何意义;5C:根据实际问题选择函数类型;B8:频率分布直方图.菁优网版权所有
【专题】11:计算题;51:函数的性质及应用;5I:概率与统计.
【分析】(Ⅰ)若n=19,结合题意,可得y与x的分段函数解析式;
(Ⅱ)由柱状图分别求出各组的频率,结合“需更换的易损零件数不大于n”的频率不小于0.5,可得n的最小值;
(Ⅲ)分别求出每台都购买19个易损零件,或每台都购买20个易损零件时的平均费用,比较后,可得答案.
【解答】解:(Ⅰ)当n=19时,
y==
(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,
更换的易损零件数为17个频率为0.16,
更换的易损零件数为18个频率为0.24,
更换的易损零件数为19个频率为0.24
又∵更换易损零件不大于n的频率为不小于0.5.
则n≥19
∴n的最小值为19件;
(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,
所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)
假设这100台机器在购机的同时每台都购买20个易损零件,
所须费用平均数为(90×4000+10×4500)=4050(元)
∵4000<4050
∴购买1台机器的同时应购买19台易损零件.
【点评】本题考查的知识点是分段函数的应用,频率分布条形图,方案选择,难度中档.
20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.
(Ⅰ)求;
(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.
【考点】K8:抛物线的性质.菁优网版权所有
【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.
【分析】(Ⅰ)求出P,N,H的坐标,利用=,求;
(Ⅱ)直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,利用判别式可得结论.
【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),
∵M关于点P的对称点为N,
∴=,=t,
∴N(,t),
∴ON的方程为y=x,