8.(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()
A.7 B.12 C.17 D.34
【考点】EF:程序框图.菁优网版权所有
【专题】11:计算题;28:操作型;5K:算法和程序框图.
【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.
【解答】解:∵输入的x=2,n=2,
当输入的a为2时,S=2,k=1,不满足退出循环的条件;
当再次输入的a为2时,S=6,k=2,不满足退出循环的条件;
当输入的a为5时,S=17,k=3,满足退出循环的条件;
故输出的S值为17,
故选:C.
【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.
9.(5分)若cos(﹣α)=,则sin2α=()
A. B. C.﹣ D.﹣
【考点】GF:三角函数的恒等变换及化简求值.菁优网版权所有
【专题】36:整体思想;4R:转化法;56:三角函数的求值.
【分析】法1°:利用诱导公式化sin2α=cos(﹣2α),再利用二倍角的余弦可得答案.
法°:利用余弦二倍角公式将左边展开,可以得sinα+cosα的值,再平方,即得sin2α的值
【解答】解:法1°:∵cos(﹣α)=,
∴sin2α=cos(﹣2α)=cos2(﹣α)=2cos2(﹣α)﹣1=2×﹣1=﹣,
法2°:∵cos(﹣α)=(sinα+cosα)=,
∴(1+sin2α)=,
∴sin2α=2×﹣1=﹣,
故选:D.
【点评】本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题.
10.(5分)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn构成n个数对(x1,y1),(x2,y2)…(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()
A. B. C. D.
【考点】CF:几何概型.菁优网版权所有
【专题】11:计算题;34:方程思想;49:综合法;5I:概率与统计.
【分析】以面积为测度,建立方程,即可求出圆周率π的近似值.
【解答】解:由题意,两数的平方和小于1,对应的区域的面积为π•12,从区间[0,1】随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),对应的区域的面积为12.
∴=
∴π=.
故选:C.
【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.
11.(5分)已知F1,F2是双曲线E:﹣=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()
A. B. C. D.2
【考点】KC:双曲线的性质.菁优网版权所有