【专题】31:数形结合;44:数形结合法;5D:圆锥曲线的定义、性质与方程.
【分析】由条件MF1⊥MF2,sin∠MF2F1=,列出关系式,从而可求离心率.
【解答】解:由题意,M为双曲线左支上的点,
则丨MF1丨=,丨MF2丨=,
∴sin∠MF2F1=,∴=,
可得:2b4=a2c2,即b2=ac,又c2=a2+b2,
可得e2﹣e﹣=0,
e>1,解得e=.
故选:A.
【点评】本题考查双曲线的定义及离心率的求解,关键是找出几何量之间的关系,考查数形结合思想,属于中档题.
12.(5分)已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则(xi+yi)=()
A.0 B.m C.2m D.4m
【考点】3P:抽象函数及其应用.菁优网版权所有
【专题】33:函数思想;48:分析法;51:函数的性质及应用.
【分析】由条件可得f(x)+f(﹣x)=2,即有f(x)关于点(0,1)对称,又函数y=,即y=1+的图象关于点(0,1)对称,即有(x1,y1)为交点,即有(﹣x1,2﹣y1)也为交点,计算即可得到所求和.
【解答】解:函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),
即为f(x)+f(﹣x)=2,
可得f(x)关于点(0,1)对称,
函数y=,即y=1+的图象关于点(0,1)对称,
即有(x1,y1)为交点,即有(﹣x1,2﹣y1)也为交点,
(x2,y2)为交点,即有(﹣x2,2﹣y2)也为交点,
…
则有(xi+yi)=(x1+y1)+(x2+y2)+…+(xm+ym)
=[(x1+y1)+(﹣x1+2﹣y1)+(x2+y2)+(﹣x2+2﹣y2)+…+(xm+ym)+(﹣xm+2﹣ym)]
=m.
故选:B.
【点评】本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题.
二、填空题:本题共4小题,每小题5分.
13.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.
【考点】HU:解三角形.菁优网版权所有
【专题】34:方程思想;48:分析法;56:三角函数的求值;58:解三角形.
【分析】运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.
【解答】解:由cosA=,cosC=,可得
sinA===,
sinC===,
sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,
由正弦定理可得b=
==.
故答案为:.