订单查询
首页 其他文档
全国统一高考数学试卷(理科)(新课标ⅱ)
大小:0B 13页 发布时间: 2024-01-31 17:52:10 7k 6.45k

p2=P(B|A)===

(Ⅲ)由题意,续保人本年度的平均保费与基本保费的比值为:

=1.23,

∴续保人本年度的平均保费与基本保费的比值为1.23.

【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式、条件概率计算公式的合理运用.

19.(12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点H,将△DEF沿EF折到△D′EF的位置,OD′=

(Ⅰ)证明:D′H⊥平面ABCD;

(Ⅱ)求二面角B﹣D′A﹣C的正弦值.

【考点】MJ:二面角的平面角及求法.菁优网版权所有

【专题】15:综合题;35:转化思想;44:数形结合法;5G:空间角.

【分析】(Ⅰ)由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得EF⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面ABCD;

(Ⅱ)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到的坐标,分别求出平面ABD′与平面AD′C的一个法向量,设二面角二面角B﹣D′A﹣C的平面角为θ,求出|cosθ|.则二面角B﹣D′A﹣C的正弦值可求.

【解答】(Ⅰ)证明:∵ABCD是菱形,

∴AD=DC,又AE=CF=

,则EF∥AC,

又由ABCD是菱形,得AC⊥BD,则EF⊥BD,

∴EF⊥DH,则EF⊥D′H,

∵AC=6,

∴AO=3,

又AB=5,AO⊥OB,

∴OB=4,

∴OH==1,则DH=D′H=3,

∴|OD′|2=|OH|2+|D′H|2,则D′H⊥OH,

又OH∩EF=H,

∴D′H⊥平面ABCD;

(Ⅱ)解:以H为坐标原点,建立如图所示空间直角坐标系,

∵AB=5,AC=6,

∴B(5,0,0),C(1,3,0),D′(0,0,3),A(1,﹣3,0),

设平面ABD′的一个法向量为

,得,取x=3,得y=﹣4,z=5.

同理可求得平面AD′C的一个法向量

设二面角二面角B﹣D′A﹣C的平面角为θ,

则|cosθ|=

∴二面角B﹣D′A﹣C的正弦值为sinθ=

【点评】本题考查线面垂直的判定,考查了二面角的平面角的求法,训练了利用平面的法向量求解二面角问题,体现了数学转化思想方法,是中档题.

20.(12分)已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441