【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,
∴D=﹣2,E=4,F=﹣20,
∴x2+y2﹣2x+4y﹣20=0,
令x=0,可得y2+4y﹣20=0,
∴y=﹣2±2,
∴|MN|=4.
故选:C.
【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.
8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()
A.0 B.2 C.4 D.14
【考点】EF:程序框图.菁优网版权所有
【专题】5K:算法和程序框图.
【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.
【解答】解:由a=14,b=18,a<b,
则b变为18﹣14=4,
由a>b,则a变为14﹣4=10,
由a>b,则a变为10﹣4=6,
由a>b,则a变为6﹣4=2,
由a<b,则b变为4﹣2=2,
由a=b=2,
则输出的a=2.
故选:B.
【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.
9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()
A.36π B.64π C.144π D.256π
【考点】LG:球的体积和表面积.菁优网版权所有
【专题】11:计算题;5F:空间位置关系与距离.
【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.
【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时VO﹣ABC=VC﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,
故选:C.
【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.
10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()
A. B.
C. D.
【考点】HC:正切函数的图象.菁优网版权所有
【分析】根据函数图象关系,利用排除法进行求解即可.
【解答】解:当0≤x≤时,BP=tanx,AP==,