此时f(x)=+tanx,0≤x≤,此时单调递增,
当P在CD边上运动时,≤x≤且x≠时,
如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,
∴OQ=﹣,
∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,
∴PA+PB=,
当x=时,PA+PB=2,
当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,
由对称性可知函数f(x)关于x=对称,
且f()>f(),且轨迹为非线型,
排除A,C,D,
故选:B.
【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.
11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()
A. B.2 C. D.
【考点】KC:双曲线的性质.菁优网版权所有
【专题】5D:圆锥曲线的定义、性质与方程.
【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.
【解答】解:设M在双曲线﹣=1的左支上,
且MA=AB=2a,∠MAB=120°,
则M的坐标为(﹣2a,a),
代入双曲线方程可得,
﹣=1,
可得a=b,
c==a,
即有e==.
故选:D.
【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.
12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()
A.(﹣∞,﹣1)∪(0,1) B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞)
【考点】6B:利用导数研究函数的单调性.菁优网版权所有
【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.
【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.
【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,
∵当x>0时总有xf′(x)<f(x)成立,
即当x>0时,g′(x)恒小于0,
∴当x>0时,函数g(x)=为减函数,
又∵g(﹣x)====g(x),