订单查询
首页 其他文档
全国统一高考数学试卷(理科)(新课标ⅱ)
大小:0B 13页 发布时间: 2024-01-31 18:01:08 19.3k 17.61k

此时f(x)=+tanx,0≤x≤,此时单调递增,

当P在CD边上运动时,≤x≤且x≠时,

如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣

∴OQ=﹣

∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣

∴PA+PB=

当x=时,PA+PB=2

当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,

由对称性可知函数f(x)关于x=对称,

且f()>f(),且轨迹为非线型,

排除A,C,D,

故选:B.

【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.

11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()

A. B.2 C. D.

【考点】KC:双曲线的性质.菁优网版权所有

【专题】5D:圆锥曲线的定义、性质与方程.

【分析】设M在双曲线=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.

【解答】解:设M在双曲线=1的左支上,

且MA=AB=2a,∠MAB=120°,

则M的坐标为(﹣2a,a),

代入双曲线方程可得,

=1,

可得a=b,

c==a,

即有e==

故选:D.

【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.

12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()

A.(﹣∞,﹣1)∪(0,1) B.(﹣1,0)∪(1,+∞)

C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞)

【考点】6B:利用导数研究函数的单调性.菁优网版权所有

【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.

【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.

【解答】解:设g(x)=,则g(x)的导数为:g′(x)=

∵当x>0时总有xf′(x)<f(x)成立,

即当x>0时,g′(x)恒小于0,

∴当x>0时,函数g(x)=为减函数,

又∵g(﹣x)====g(x),

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441