又∵该几何体的表面积为16+20π,
∴5πr2+4r2=16+20π,解得r=2,
故选:B.
【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.
12.(5分)设函数f(x)=ex(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()
A.[) B.[) C.[) D.[)
【考点】51:函数的零点;6D:利用导数研究函数的极值.菁优网版权所有
【专题】2:创新题型;53:导数的综合应用.
【分析】设g(x)=ex(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.
【解答】解:设g(x)=ex(2x﹣1),y=ax﹣a,
由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,
∵g′(x)=ex(2x﹣1)+2ex=ex(2x+1),
∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,
∴当x=﹣时,g(x)取最小值﹣2,
当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,
直线y=ax﹣a恒过定点(1,0)且斜率为a,
故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1
故选:D.
【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题.
二、填空题(本大题共有4小题,每小题5分)
13.(5分)若函数f(x)=xln(x+)为偶函数,则a=1.
【考点】3K:函数奇偶性的性质与判断.菁优网版权所有
【专题】51:函数的性质及应用.
【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解.
【解答】解:∵f(x)=xln(x+)为偶函数,
∴f(﹣x)=f(x),
∴(﹣x)ln(﹣x+)=xln(x+),
∴﹣ln(﹣x+)=ln(x+),
∴ln(﹣x+)+ln(x+)=0,
∴ln(+x)(﹣x)=0,
∴lna=0,
∴a=1.
故答案为:1.
【点评】本题主要考查了偶函数的定义及对数的运算性质的简单应用,属于基础试题.
14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.
【考点】K3:椭圆的标准方程.菁优网版权所有
【专题】5D:圆锥曲线的定义、性质与方程.
【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.