当直线移动时,运用极限思想,
①直线接近点C时,AB趋近最小,为﹣;
②直线接近点E时,AB趋近最大值,为+;
故答案为:(﹣,+).
【点评】本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.
三、解答题:
17.(12分)Sn为数列{an}的前n项和,已知an>0,an2+2an=4Sn+3
(I)求{an}的通项公式:
(Ⅱ)设bn=,求数列{bn}的前n项和.
【考点】8E:数列的求和;8H:数列递推式.菁优网版权所有
【专题】54:等差数列与等比数列.
【分析】(I)根据数列的递推关系,利用作差法即可求{an}的通项公式:
(Ⅱ)求出bn=,利用裂项法即可求数列{bn}的前n项和.
【解答】解:(I)由an2+2an=4Sn+3,可知an+12+2an+1=4Sn+1+3
两式相减得an+12﹣an2+2(an+1﹣an)=4an+1,
即2(an+1+an)=an+12﹣an2=(an+1+an)(an+1﹣an),
∵an>0,∴an+1﹣an=2,
∵a12+2a1=4a1+3,
∴a1=﹣1(舍)或a1=3,
则{an}是首项为3,公差d=2的等差数列,
∴{an}的通项公式an=3+2(n﹣1)=2n+1:
(Ⅱ)∵an=2n+1,
∴bn===(﹣),
∴数列{bn}的前n项和Tn=(﹣+…+﹣)=(﹣)=.
【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.
18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面 ABCD,BE=2DF,AE丄EC.
(Ⅰ)证明:平面AEC丄平面AFC
(Ⅱ)求直线AE与直线CF所成角的余弦值.
【考点】LM:异面直线及其所成的角;LY:平面与平面垂直.菁优网版权所有
【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.
【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;
(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.
【解答】解:(Ⅰ)连接BD,
设BD∩AC=G,
连接EG、EF、FG,
在菱形ABCD中,
不妨设BG=1,
由∠ABC=120°,