可得AG=GC=,
BE⊥平面ABCD,AB=BC=2,
可知AE=EC,又AE⊥EC,
所以EG=,且EG⊥AC,
在直角△EBG中,可得BE=,故DF=,
在直角三角形FDG中,可得FG=,
在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF==,
从而EG2+FG2=EF2,则EG⊥FG,
(或由tan∠EGB•tan∠FGD=•=•=1,
可得∠EGB+∠FGD=90°,则EG⊥FG)
AC∩FG=G,可得EG⊥平面AFC,
由EG⊂平面AEC,所以平面AEC⊥平面AFC;
(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,
建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),
F(﹣1,0,),C(0,,0),
即有=(1,,),=(﹣1,﹣,),
故cos<,>===﹣.
则有直线AE与直线CF所成角的余弦值为.
【点评】本题考查空间直线和平面的位置关系和空间角的求法,主要考查面面垂直的判定定理和异面直线所成的角的求法:向量法,考查运算能力,属于中档题.
19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
(xi﹣)2(wi﹣)2(xi﹣)(yi﹣)(wi﹣)(yi﹣)
46.65636.8289.81.61469108.8
表中wi=i,=
(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:
(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1 v1),(u2 v2)…..(un vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.
【考点】BK:线性回归方程.菁优网版权所有
【专题】5I:概率与统计.
【分析】(Ⅰ)根据散点图,即可判断出,
(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;
(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,
(ii)求出预报值得方程,根据函数的性质,即可求出.
【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;
(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,
=﹣=563﹣68×6.8=100.6,