由于①式等价于k<g(α),故整数k的最大值为2.
【点评】本题考查利用导数求函数的最值及利用导数研究函数的单调性,解题的关键是第一小题应用分类的讨论的方法,第二小题将问题转化为求函数的最小值问题,本题考查了转化的思想,分类讨论的思想,考查计算能力及推理判断的能力,综合性强,是高考的重点题型,难度大,计算量也大,极易出错.
22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:
(1)CD=BC;
(2)△BCD∽△GBD.
【考点】N4:相似三角形的判定.菁优网版权所有
【专题】14:证明题.
【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;
(2)证明两组对应角相等,即可证得△BCD~△GBD.
【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点
∴DF∥BC,AD=DB
∵AB∥CF,∴四边形BDFC是平行四边形
∴CF∥BD,CF=BD
∴CF∥AD,CF=AD
∴四边形ADCF是平行四边形
∴AF=CD
∵,∴BC=AF,∴CD=BC.
(2)由(1)知,所以.
所以∠BGD=∠DBC.
因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.
所以△BCD~△GBD.
【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.
23.选修4﹣4;坐标系与参数方程
已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).
(1)求点A,B,C,D的直角坐标;
(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.
【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.菁优网版权所有
【专题】15:综合题;16:压轴题.
【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;
(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.
【解答】解:(1)点A,B,C,D的极坐标为
点A,B,C,D的直角坐标为
(2)设P(x0,y0),则为参数)
t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ
∵sin2φ∈[0,1]
∴t∈[32,52]
【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.
24.已知函数f(x)=|x+a|+|x﹣2|