(2)若a=2,△ABC的面积为,求b,c.
18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:
日需求量n14151617181920
频数10201616151310
(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.
20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
21.(12分)设函数f(x)=ex﹣ax﹣2.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.
22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:
(1)CD=BC;
(2)△BCD∽△GBD.
23.选修4﹣4;坐标系与参数方程
已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).
(1)求点A,B,C,D的直角坐标;
(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.
24.已知函数f(x)=|x+a|+|x﹣2|
①当a=﹣3时,求不等式f(x)≥3的解集;
②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.
参考答案与试题解析
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.
1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()
A.A⊊B B.B⊊A C.A=B D.A∩B=∅
【考点】18:集合的包含关系判断及应用.菁优网版权所有
【专题】5J:集合.
【分析】先求出集合A,然后根据集合之间的关系可判断
【解答】解:由题意可得,A={x|﹣1<x<2},
∵B={x|﹣1<x<1},
在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=
∴B⊊A.