∵,
∴=0,
∴﹣(2λ+3)﹣3=0,解得λ=﹣3.
故选:B.
【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.
4.(5分)不等式|x2﹣2|<2的解集是()
A.(﹣1,1) B.(﹣2,2) C.(﹣1,0)∪(0,1) D.(﹣2,0)∪(0,2)
【考点】R5:绝对值不等式的解法.菁优网版权所有
【专题】11:计算题;59:不等式的解法及应用.
【分析】直接利用绝对值不等式的解法,去掉绝对值后,解二次不等式即可.
【解答】解:不等式|x2﹣2|<2的解集等价于,不等式﹣2<x2﹣2<2的解集,即0<x2<4,
解得x∈(﹣2,0)∪(0,2).
故选:D.
【点评】本题考查绝对值不等式的解法,考查转化思想与计算能力.
5.(5分)(x+2)8的展开式中x6的系数是()
A.28 B.56 C.112 D.224
【考点】DA:二项式定理.菁优网版权所有
【专题】5I:概率与统计.
【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为6求出x6的系数.
【解答】解:(x+2)8展开式的通项为T r+1=Cx 8﹣r2 r
令8﹣r=6得r=2,
∴展开式中x6的系数是2 2C82=112.
故选:C.
【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.
6.(5分)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()
A. B. C.2x﹣1(x∈R) D.2x﹣1(x>0)
【考点】4R:反函数.菁优网版权所有
【专题】51:函数的性质及应用.
【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.
【解答】解:设y=log2(1+),
把y看作常数,求出x:
1+=2y,x=,其中y>0,
x,y互换,得到y=log2(1+)的反函数:y=,
故选:A.
【点评】本题考查对数函数的反函数的求法,解题时要认真审题,注意对数式和指数式的相互转化.
7.(5分)已知数列{an}满足3an+1+an=0,a2=﹣,则{an}的前10项和等于()
A.﹣6(1﹣3﹣10) B. C.3(1﹣3﹣10) D.3(1+3﹣10)
【考点】89:等比数列的前n项和.菁优网版权所有
【专题】11:计算题;54:等差数列与等比数列.
【分析】由已知可知,数列{an}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求