∴﹣4﹣2a=8
∴a=﹣6
故选:D.
【点评】本题考查导数的几何意义,考查学生的计算能力,属于基础题.
11.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()
A. B. C. D.
【考点】MI:直线与平面所成的角.菁优网版权所有
【专题】15:综合题;16:压轴题;5G:空间角;5H:空间向量及应用.
【分析】设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,设=(x,y,z)为平面BDC1的一个法向量,CD与平面BDC1所成角为θ,
则sinθ=||,在空间坐标系下求出向量坐标,代入计算即可.
【解答】解:设AB=1,则AA1=2,分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,
如下图所示:
则D(0,0,2),C1(1,0,0),B(1,1,2),C(1,0,2),
=(1,1,0),=(1,0,﹣2),=(1,0,0),
设=(x,y,z)为平面BDC1的一个法向量,则,即,取=(2,﹣2,1),
设CD与平面BDC1所成角为θ,则sinθ=||=,
故选:A.
【点评】本题考查直线与平面所成的角,考查空间向量的运算及应用,准确理解线面角与直线方向向量、平面法向量夹角关系是解决问题的关键.
12.(5分)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()
A. B. C. D.2
【考点】9O:平面向量数量积的性质及其运算;K8:抛物线的性质.菁优网版权所有
【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.
【分析】斜率k存在,设直线AB为y=k(x﹣2),代入抛物线方程,利用=(x1+2,y1﹣2)•(x2+2,y2﹣2)=0,即可求出k的值.
【解答】解:由抛物线C:y2=8x得焦点(2,0),
由题意可知:斜率k存在,设直线AB为y=k(x﹣2),
代入抛物线方程,得到k2x2﹣(4k2+8)x+4k2=0,△>0,
设A(x1,y1),B(x2,y2).
∴x1+x2=4+,x1x2=4.
∴y1+y2=,y1y2=﹣16,
又=0,
∴=(x1+2,y1﹣2)•(x2+2,y2﹣2)==0
∴k=2.
故选:D.
【点评】本题考查直线与抛物线的位置关系,考查向量的数量积公式,考查学生的计算能力,属于中档题.
二、填空题:本大题共4小题,每小题5分.
13.(5分)设f(x)是以2为周期的函数,且当x∈[1,3)时,f(x)=x﹣2,则f(﹣1)=﹣1.
【考点】3T:函数的值.菁优网版权所有
【专题】11:计算题.
【分析】利用函数的周期,求出f(﹣1)=f(1),代入函数的解析式求解即可.