在△A1DC中,DF==,EF==,
所以二面角D﹣A1C﹣E的正弦值.sin∠DFE=.
【点评】本题考查直线与平面平行的判定定理的应用,二面角的平面角的求法,考查空间想象能力与计算能力.
19.(12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将T表示为x的函数;
(Ⅱ)根据直方图估计利润T不少于57000元的概率;
(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.
【考点】B8:频率分布直方图;BE:用样本的数字特征估计总体的数字特征;CH:离散型随机变量的期望与方差.菁优网版权所有
【专题】5I:概率与统计.
【分析】(Ⅰ)由题意先分段写出,当x∈[100,130)时,当x∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.
(Ⅱ)由(I)知,利润T不少于57000元,当且仅当120≤x≤150.再由直方图知需求量X∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T不少于57000元的概率的估计值.
(Ⅲ)利用利润T的数学期望=各组的区间中点值×该区间的频率之和即得.
【解答】解:(Ⅰ)由题意得,当x∈[100,130)时,T=500x﹣300(130﹣x)=800x﹣39000,
当x∈[130,150)时,T=500×130=65000,
∴T=.
(Ⅱ)由(Ⅰ)知,利润T不少于57000元,当且仅当120≤x≤150.
由直方图知需求量X∈[120,150]的频率为0.7,
所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.
(Ⅲ)依题意可得T的分布列如图,
T45000530006100065000
p0.10.20.30.4
所以ET=45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.
【点评】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义,是中档题.
20.(12分)平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.
(Ⅰ)求M的方程
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.
【考点】IJ:直线的一般式方程与直线的垂直关系;KH:直线与圆锥曲线的综合.菁优网版权所有
【专题】16:压轴题;5D:圆锥曲线的定义、性质与方程.
【分析】(Ⅰ)把右焦点(c,0)代入直线可解得c.设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),利用“点差法”即可得到a,b的关系式,再与a2=b2+c2联立即可得到a,b,c.
(Ⅱ)由CD⊥AB,可设直线CD的方程为y=x+t,与椭圆的方程联立得到根与系数的关系,即可得到弦长|CD|.把直线x+y﹣=0与椭圆的方程联立得到根与系数的关系,即可得到弦长|AB|,利用S四边形ACBD=即可得到关于t的表达式,利用二次函数的单调性即可得到其最大值.
【解答】解:(Ⅰ)把右焦点(c,0)代入直线x+y﹣=0得c+0﹣=0,解得c=.
设A(x1,y1),B(x2,y2),线段AB的中点P(x0,y0),
则,,相减得,
∴,
∴,又=,
∴,即a2=2b2.
联立得,解得,
∴M的方程为.