分享
【解答】证明:(Ⅰ)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得:
a2+b2+c2≥ab+bc+ca,
由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,
所以3(ab+bc+ca)≤1,即ab+bc+ca≤.
(Ⅱ)因为+b≥2a,+c≥2b,+a≥2c,
故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.
所以++≥1.
【点评】本题考查不等式的证明,突出考查基本不等式与综合法的应用,考查推理论证能力,属于中档题.