14.(5分)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n= .
15.(5分)设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ= .
16.(5分)等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为 .
三.解答题:解答应写出文字说明,证明过程或演算步骤:
17.(12分)△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面积的最大值.
18.(12分)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.
(Ⅰ)证明:BC1∥平面A1CD
(Ⅱ)求二面角D﹣A1C﹣E的正弦值.
19.(12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将T表示为x的函数;
(Ⅱ)根据直方图估计利润T不少于57000元的概率;
(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.
20.(12分)平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.
(Ⅰ)求M的方程
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.
21.(12分)已知函数f(x)=ex﹣ln(x+m)
(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(Ⅱ)当m≤2时,证明f(x)>0.
选考题:(第22题~第24题为选考题,考生根据要求作答.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分评分,作答时请写清题号)
22.(10分)【选修4﹣1几何证明选讲】
如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.
(1)证明:CA是△ABC外接圆的直径;
(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.
23.已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.
24.【选修4﹣﹣5;不等式选讲】
设a,b,c均为正数,且a+b+c=1,证明:
(Ⅰ)
(Ⅱ).
参考答案与试题解析
一、选择题:本大题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=( )
A.{0,1,2} B.{﹣1,0,1,2} C.{﹣1,0,2,3} D.{0,1,2,3}
【考点】1E:交集及其运算;73:一元二次不等式及其应用.菁优网版权所有