故nSn的最小值为﹣49.
故答案为:﹣49.
【点评】此题考查了等差数列的性质,以及等差数列的前n项和公式,熟练掌握性质及公式是解本题的关键.
三.解答题:解答应写出文字说明,证明过程或演算步骤:
17.(12分)△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面积的最大值.
【考点】HP:正弦定理;HR:余弦定理.菁优网版权所有
【专题】58:解三角形.
【分析】(Ⅰ)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;
(Ⅱ)利用三角形的面积公式表示出三角形ABC的面积,把sinB的值代入,得到三角形面积最大即为ac最大,利用余弦定理列出关系式,再利用基本不等式求出ac的最大值,即可得到面积的最大值.
【解答】解:(Ⅰ)由已知及正弦定理得:sinA=sinBcosC+sinBsinC①,
∵sinA=sin(B+C)=sinBcosC+cosBsinC②,
∴sinB=cosB,即tanB=1,
∵B为三角形的内角,
∴B=;
(Ⅱ)S△ABC=acsinB=ac,
由已知及余弦定理得:4=a2+c2﹣2accos≥2ac﹣2ac×,
整理得:ac≤,当且仅当a=c时,等号成立,
则△ABC面积的最大值为××=××(2+)=+1.
【点评】此题考查了正弦、余弦定理,三角形的面积公式,两角和与差的正弦函数公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.
18.(12分)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.
(Ⅰ)证明:BC1∥平面A1CD
(Ⅱ)求二面角D﹣A1C﹣E的正弦值.
【考点】LS:直线与平面平行;MJ:二面角的平面角及求法.菁优网版权所有
【专题】11:计算题;14:证明题;5G:空间角.
【分析】(Ⅰ)通过证明BC1平行平面A1CD内的直线DF,利用直线与平面平行的判定定理证明BC1∥平面A1CD
(Ⅱ)证明DE⊥平面A1DC,作出二面角D﹣A1C﹣E的平面角,然后求解二面角平面角的正弦值即可.
【解答】解:(Ⅰ)证明:连结AC1交A1C于点F,则F为AC1的中点,
又D是AB中点,连结DF,则BC1∥DF,
因为DF⊂平面A1CD,BC1⊄平面A1CD,
所以BC1∥平面A1CD.
(Ⅱ)因为直棱柱ABC﹣A1B1C1,所以AA1⊥CD,
由已知AC=CB,D为AB的中点,所以CD⊥AB,
又AA1∩AB=A,于是,CD⊥平面ABB1A1,
设AB=2,则AA1=AC=CB=2,得∠ACB=90°,
CD=,A1D=,DE=,A1E=3
故A1D2+DE2=A1E2,即DE⊥A1D,所以DE⊥平面A1DC,
又A1C=2,过D作DF⊥A1C于F,∠DFE为二面角D﹣A1C﹣E的平面角,