13.(5分)(2011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B={x|﹣2≤x≤5}.
【考点】交集及其运算.菁优网版权所有
【专题】集合.
【分析】求出集合A,求出集合B,然后利用集合的运算法则求出A∩B.
【解答】解:集合A={x∈R||x+3|+|x﹣4|≤9},所以A={x|﹣4≤x≤5};
集合,
,
当且仅当t=时取等号,所以B={x|x≥﹣2},
所以A∩B={x|﹣4≤x≤5}∩{x|x≥﹣2}={x|﹣2≤x≤5},
故答案为:{x|﹣2≤x≤5}.
【点评】本题是基础题,考查集合的基本运算,注意求出绝对值不等式的解集,基本不等式求出函数的值域,是本题解题是关键,考查计算能力.
14.(5分)(2011•天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为5.
【考点】向量的模.菁优网版权所有
【专题】平面向量及应用.
【分析】根据题意,利用解析法求解,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0),设P(0,b)(0≤b≤a),求出,根据向量模的计算公式,即可求得,利用完全平方式非负,即可求得其最小值.
【解答】解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,
则A(2,0),B(1,a),C(0,a),D(0,0)
设P(0,b)(0≤b≤a)
则=(2,﹣b),=(1,a﹣b),
∴=(5,3a﹣4b)
∴=≥5.
故答案为5.
【点评】此题是个基础题.考查向量在几何中的应用,以及向量模的求法,同时考查学生灵活应用知识分析解决问题的能力.