订单查询
首页 其他文档
初一数学奥数题及答案
大小:467.77KB 4页 发布时间: 2024-01-27 11:05:17 15.6k 15.27k

(2)求新合金中含第二种合金的重量范围;

最大:1.035最小:0.905

(3)求新合金中含锰的重量范围.

0.01~0.54

参考答案

2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以

原式=-b+(a+b)-(c-b)-(a-c)=b.

3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,

|x+m|+|x-n|=x+m-x+n=m+n.

4.分别令x=1,x=-1,代入已知等式中,得

a0+a2+a4+a6=-8128.

10.由已知可解出y和z

因为y,z为非负实数,所以有

u=3x-2y+4z

11.所以商式为x2-3x+3,余式为2x-4

12.小柱的路线是由三条线段组成的折线(如图1-97所示).

我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)

显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.

13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.

因为∠COD=55°,所以∠DOE=90°-55°=35°.

因此,∠DOE的补角为180°-35°=145°.

14.如图1-99所示.因为BE平分∠ABC,所以

∠CBF=∠ABF,

又因为∠CBF=∠CFB,所以∠ABF=∠CFB.

从而AB‖CD(内错角相等,两直线平行).

由∠CBF=55°及BE平分∠ABC,所以∠ABC=2×55°=110°.①

由上证知AB‖CD,所以∠EDF=∠A=70°,②

由①,②知BC‖AE(同侧内角互补,两直线平行).

15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,

所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).

①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.

所以BC‖DG(内错角相等,两直线平行).

所以∠AGD=∠ACB(两直线平行,同位角相等).

16.在△BCD中,

∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以

∠A+∠B+∠C=∠A+2∠C=180°,

所以由①,②

17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以

又S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,

所以S△EFGD=3S△BFD.

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441