(2)求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);
(3)求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)
5.相反数的表示方法
(1)一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。
①当a>0时,-a<0(正数的相反数是负数)
②当a<0时,-a>0(负数的相反数是正数)
③当a=0时,-a=0,(0的相反数是0)
6.多重符号的化简
多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
五、绝对值
1、绝对值的几何定义
一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2、绝对值的代数定义
(1)一个正数的绝对值是它本身;
(2)一个负数的绝对值是它的相反数;
(3)0的绝对值是0。
3、可用字母表示为
(1)如果a>0,那么|a|=a;
(2)如果a<0,那么|a|=-a;
(3)如果a=0,那么|a|=0。
4、可归纳为
(1)a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)
(2)a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)
5、绝对值的性质
任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即
(1)0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;
(2)一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;
(3)任何数的绝对值都不小于原数。即:|a|≥a;
(4)绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;
(5)互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;
(6)绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;
(7)若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)
6、有理数大小的比较
(1)利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;
(2)利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
7、绝对值的化简
(1)当a≥0时,|a|=a;
(2)当a≤0时,|a|=-a。
8、已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
六、有理数的加减法