黄道
地球上的人看太阳于一年内在恒星之间所走的视路径,即地球的公转轨道平面和天球相交的大圆黄道和天赤道成23度26分的角,相交于春分点和秋分点。
黄极
天球上与黄道角距离都是90度的两点,靠近北天极的叫“北黄极”。黄极与天极的角距离等于黄赤交角。北黄极在天龙座与两星联线的中央。
黄道带
天球上黄道两边各8度(共宽16度)的一条带。日、月和主要行星的运行路径都处在黄道带内。古人为了表示太阳在黄道上的位置。把黄道分为十二段,叫“黄道十二宫”。从春分起依次为白羊、金牛、双子、巨蟹、狮子、室女、天秤、天蝎、人马、摩羯、宝瓶和双鱼。过去的黄道十二宫和黄道十二星座一致。由于春分点向西移动,两千年前在白羊座中的春分点已移至双鱼座,命名与星座已不吻合。
黄道坐标
一种“天文坐标”。天体在天球上的位置由黄经和黄纬两个坐标表示。春分点的黄经圈与通过某一天体的黄经圈在黄极所成的角度,或在黄道上所夹的弧长,叫做该天体的黄经。计量方向为在黄道上由春分点起,沿着与太阳周年运动相同的方向,从0-360度。从黄道起,沿黄经圈到天体的角距离称为该天体的黄纬。计量方向从黄道起,由0-90度,黄道以北为正。
赤道坐标
一种“天文坐标“。以赤经和赤纬两个坐标表示天球上任一天体的位置。由春分点的赤经圈(时圈)与通过该天体的赤经圈在北天极所成的角度,或在天赤道上所夹的弧长,称为该天体的赤经计量方向自春分点起沿着与天球周日运动相反的方向量度,以时、分、秒表示。从天赤道开始沿赤经圈到天体的角距离称为该天体的赤纬。计量方向从天赤道起,由0-90度,天赤道以北为正。
岁差
地球的轴进动引起春分点缓慢向西运行(速度每年50.2秒,约25,800年运行一周),而使回归年比恒星年短的现象。
回归年
又称“太阳年”。即太阳视圆面中心相继两过春分点所经历的时间。回归年比恒星年约短20分23秒,回归年长365.2422平太阳日或365日5时48分46秒。对应1900年初回归年长为365.24219892平太阳日,这个数值不是不变的,每百年减少0.53秒。
恒星年
地球绕太阳公转一周所经历的时间间隔。只在天文学上使用。等于365.25636个平太阳日或365日6时9分9.5秒。
“聚星”和“星团”
三颗或三颗以上靠引力聚在一起的星,称作“聚星”。如果聚星的成员超过了10个,一般就称之为“星团”。
双星
不但看上去离得近。实际距离也很近的两颗星,通过万有引力互相吸引,彼此围绕着对方不停地旋转。只有这种关系,才能称作现代天文学意义上的双星。天文学上把双星中比较亮的一颗称为主星,比较暗的那颗称为伴星。
星云
宇宙空间的很多区域并不是绝对的真空,在恒星际空间内充满着恒星际物质。恒星际物质的分布是很不均匀的,其中宇宙尘埃物质密度较大的区域(此密度仍然远远小于地球上的实验室真空)所观测到的是雾状斑点,称为星云。星云类型主要有“亮星云”和“暗星云”两种。
变星
凡是能够观测到亮度变化的恒星,都称为变星。变星主要分为造父变星和食变星两类。食变星实际上是双星系统造成的,两颗星彼此绕着对方旋转,互相遮掩彼此的光芒,从而引起观测亮度的变化。这类变星的代表是英仙座的大陵五。造父变星的变光现象,确实是由它自身造成的,如仙王座的造父一。这类变星就象人体的心脏一样,总在不停地搏动--膨胀与收缩,从而引起亮度的变化,其搏动的周期也就是它亮度变化的周期。
河外星系
河外星系指的是银河系之外的其他星系,它们都是与银河系属于同一量级的庞大恒星系统。河外星系一般用肉眼看不见,就是通过一般望远镜去观察,也还是一片雾,天文学家才发现二者完全是两码事:河外星云实际上是和我们银河系、类似的星系,而真正的“星云”,都是我介银河系的内部成员,是由恒星之间的稀薄气体和尘埃组成的。因此,现在再也不用“河外星云”这个词了,而一律改称“河外星系”。
脉冲星
能够发出有规律的射电脉冲信号的星球叫做脉冲星。1967年,英国天文学家首次发现了脉冲星。当时甚至于有人认为是一种名叫“小绿人”的外星人给我们地球人的一种信号。原来这种脉冲星是超新星爆炸后形成的中子星,它是半径仅有10千米左右的超高密度星体,是由中子密集在一起,1立方厘米的质量就能有10亿吨!这以一般人的习惯眼光来看真是太不可思议了。脉冲星的自转非常快,例如金牛星座中著名的中国新星1045年爆发后遗留下一片蟹状星云,它的中心就是一颗脉冲星,每秒钟可以自转约30次,所以能以每秒以0.033秒为周期的发出射电波脉冲。中子星的这种自转和辐射,是地球上的观测者,有时看见,有时又看不见,所以才成为脉冲型的恒星。
不规则星系
不规则星系是外形不规则,没有明显的核和悬臂,没有盘状对称结构或者看不出有旋转对称性的星系,用字母Irr表示。在全天最亮星系中,不规则星系只占5%.。按星系分类法,不规则星系分为IrrI型和IrrII型两类。
I型的是典型的不规则星系,除具有上述的一般特征外,有的还有隐约可见不甚规则的棒状结构。它们是矮星系,质量为太阳的一亿倍到十亿倍,也有可高达100亿倍太阳质量的。它们的体积小,长径的幅度为2~9千秒差距。星族成分和Sc型螺旋星系相似。O-B型星、电离氢区、气体和尘埃等年轻的星族I天体占很大比例。
II型的具有无定型的外貌,分辨不出恒星和星团等组成成分,而且往往有明显的尘埃带。一部分II型不规则星系可能是正在爆发或爆发后的星系,另一些则是受伴星系的引力扰动而扭曲了的星系。所以I型和II型不规则星系的起源可能完全不同。
中子星
1932年发现中子后不久,郎道就提出可能有由中子组成的致密星。1934年巴德和兹威基也分别提出了中子星的概念,并且指出中子星可能产生于超新星爆发。1939年奥本海默和沃尔科夫通过计算建立了第一个中子星的模型。1967年,英国射电天文学家休依什和贝尔等发现了脉冲星。不久,就确认脉冲星是快速自转的、有强磁场的中子星。典型中子星的外层为固体外壳,厚约一公里,密度高达每立方厘米一千亿克以上,由各种原子核组成的点阵结构和简并的自由电子气组成。外壳内是一层主要中子组成的流体,在这层还有少量的质子、电子和m介子。对于中子星内部的密度高达10亿亿克每立方厘米的物质态,目前有很多不同的看法:①超子流体;②固态的中子核心;③中子流体中的p介子凝聚。在极高密度下,当重子核心彼此重迭得相当紧密时,物质的性质如何是一个完全没有解决的问题。中子星的质量下限约为0.1太阳质量,上限在1.5-2太阳质量之间。中子星半径的典型值约为10公里。根据李政道等提出的反常核态理论,可能存在稳定的反常中子星,它们可能是晚期恒星的一个新的类型或新的阶段,致密星可能有第三个质量极限,即反常中子星的极大质量,约为3.2太阳质量。
黑洞
引力极强的地方,没有任何东西能从该处逃逸,甚至光线也不例外。
黑洞可从大质量恒星的“死亡”中产生,当一颗大质量恒星耗尽其内部的核燃料而抵达其演化末态时,恒星就变成不稳定的并发生引力坍缩,死亡恒星的物质的重量会猛烈地沿四面八方向内挤压,当引力大的无任何其他排斥力相对抗时,把恒星压成一个称为“奇点”的孤立点。有关黑洞结构的细节可用爱因斯坦解释引力使空间弯曲和时钟变慢的广义相对论来计算,奇点是黑洞的中心,在它周围引力极强,通常把黑洞的表面称为视界,或叫事件地平,或者叫做“静止球状黑洞的史瓦西半径”,它是那些能够和遥远事件相通的时空事件和那些因信号被强引力场捕获而不能传出去的时空事件之间的边界。在事件地平之下,逃逸速度大于光速。
黑洞在数学模型方面研究的相当完善。
白洞
广义相对论所预言的一种与黑洞相反的特殊天体。和黑洞类似,它也有一个封闭的边界,聚集在白洞内部的物质,只可以经边界向外运动,而不能反向运动,就是说白洞只向外部区域输出物质和能量,而不能吸收外部区域的任何物质和辐射。球状白洞的几何边界也是以史瓦西半径为半径的球面。其外部时空由史瓦西度规描述。白洞是一个强引力源,其外部引力性质与黑洞相同。白洞可以把它周围的物质吸积到边界上形成物质层。白洞学说主要用来解释一些高能天体现象,有人认为,类星体的核心就可能是一个白洞。当白洞内中心奇点附近所聚集的超密态物质向外喷射时,就会同它周围的物质发生猛烈碰撞,而释放出巨大能量。因此,有些剧烈的射电射线现象可能与白洞的这种效应有关。白洞目前还是一种理论模型,尚未被观测所证实。