9.(16分)(1)用螺旋测微器测金属导线的直径,其示数如图所示,该金属导线的直径为 mm
(2)用下列器材组装成描绘电阻R0伏安特性曲线的电路,请将实物图连线成为实验电路。
微安表μA(量程200μA,内阻约200Ω);
电压表V(量程3V,内阻约10kΩ);
电阻R0(阻值约20kΩ);
滑动变阻器R(最大阻值50Ω,额定电流1A);
电源E(电动势3V,内阻不计);
开关S及导线若干。
(3)某同学用单摆测重力加速度,发现单摆静止时摆球重心在球心的正下方,他仍将从悬点到球心的距离当作摆长L,通过改变摆线的长度,测得6组L和对应的周期T,画出L﹣T2图线,然后在图线上选取A、B两点,坐标如图所示。他采用恰当的数据处理方法,则计算重力加速度的表达式应为g= 。请你判断该同学得到的结果与摆球重心就在球心处的情况相比,将 (填“偏大”、“偏小”或“相同”)。
10.(16分)在平面直角坐标系xOy中,第I象限存在沿y轴负方向的匀强电场,第IV象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m,电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示。不计粒子重力,求
(1)M、N两点间的电势差UMN;
(2)粒子在磁场中运动的轨道半径r;
(3)粒子从M点运动到P点的总时间t。
11.(18分)光滑水平面上放着质量mA=lkg的物块A与质量mB=2kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能EP=49J.在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示。放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B恰能到达最高点C.取g=l0m/s2,求
(1)绳拉断后B的速度VB的大小;
(2)绳拉断过程绳对B的冲量I的大小;
(3)绳拉断过程绳对A所做的功W。
12.(22分)磁悬浮列车是一种高速低耗的新型交通工具。它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l平行于y轴,宽度为d的NP边平行于x轴,如图1所示。列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁感应强度B沿Ox方向按正弦规律分布,其空间周期为λ,最大值为B0,如图2所示,金属框同一长边上各处的磁感应强度相同,整个磁场以速度v0沿Ox方向匀速平移。设在短暂时间内,MM、PQ边所在位置的磁感应强度随时间的变化可以忽略,并忽略一切阻力。列车在驱动系统作用下沿Ox方向加速行驶,某时刻速度为v(v<v0)。
(1)简要叙述列车运行中获得驱动力的原理;
(2)为使列车获得最大驱动力,写出MM、PQ边应处于磁场中的什么位置及λ与d之间应满足的关系式;
(3)计算在满足第(2)问的条件下列车速度为v时驱动力的大小。